136 research outputs found

    Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation

    Get PDF
    Missense mutations and extra copies of the α-Synuclein gene result in Parkinson disease (PD). Human stem and progenitor cells can be expanded from embryonic tissues and provide a source of non-transformed neural cells to explore the effects of these pathogenic mutations specifically in human nervous tissue. We over-expressed the wild type, A53T and A30P forms of α-synuclein in expanded populations of progenitors derived from the human fetal cortex. The protein localized in the nucleus and around microvesicles. Only the A53T form was acutely toxic, suggesting a unique vulnerability of these progenitors to this mutation. Interestingly, constitutive over-expression of wild-type α-synuclein progressively impaired the innate ability of progenitors to switch toward gliogenesis at later passages. To explore the effect of α-synuclein on neuronal subtypes selectively affected in PD, such as dopaminergic neurons, α-synuclein and its mutations were also over-expressed in terminally differentiating neuroectodermal cultures derived from human embryonic stem cells (hESC). Alpha-synuclein induced acute cytotoxicity and reduced the number of neurons expressing either tyrosine hydroxylase or gamma-aminobutyric acid over time. Consistent with the selective vulnerability of ventral midbrain dopaminergic neurons, α-synuclein cytotoxicity appeared most pronounced following FGF8/SHH specification and was decreased by inhibition of dopamine synthesis. Together, these data show that α-synuclein over-expressed in human neural embryonic cells results in patterns of degeneration that in some cases match features of Parkinson Disease. Thus, neural cells derived from hESC provide a useful model system to understand the development of α-synuclein-related pathologies and allow therapeutic drug screenin

    Real Time Imaging of Human Progenitor Neurogenesis

    Get PDF
    Human neural progenitors are increasingly being employed in drug screens and emerging cell therapies targeted towards neurological disorders where neurogenesis is thought to play a key role including developmental disorders, Alzheimer’s disease, and depression. Key to the success of these applications is understanding the mechanisms by which neurons arise. Our understanding of development can provide some guidance but since little is known about the specifics of human neural development and the requirement that cultures be expanded in vitro prior to use, it is unclear whether neural progenitors obey the same developmental mechanisms that exist in vivo. In previous studies we have shown that progenitors derived from fetal cortex can be cultured for many weeks in vitro as undifferentiated neurospheres and then induced to undergo neurogenesis by removing mitogens and exposing them to supportive substrates. Here we use live time lapse imaging and immunocytochemical analysis to show that neural progenitors use developmental mechanisms to generate neurons. Cells with morphologies and marker profiles consistent with radial glia and recently described outer radial glia divide asymmetrically and symmetrically to generate multipolar intermediate progenitors, a portion of which express ASCL1. These multipolar intermediate progenitors subsequently divide symmetrically to produce CTIP2+ neurons. This 3-cell neurogenic scheme echoes observations in rodents in vivo and in human fetal slice cultures in vitro, providing evidence that hNPCs represent a renewable and robust in vitro assay system to explore mechanisms of human neurogenesis without the continual need for fresh primary human fetal tissue. Knowledge provided by this and future explorations of human neural progenitor neurogenesis will help maximize the safety and efficacy of new stem cell therapies by providing an understanding of how to generate physiologically-relevant cell types that maintain their identities when placed in diagnostic or transplantation environments

    In vivo tracking of human neural progenitor cells in the rat brain using bioluminescence imaging

    Get PDF
    AbstractBackgroundStem cell therapies appear promising for treating certain neurodegenerative disorders and molecular imaging methods that track these cells in vivo could answer some key questions regarding their survival and migration. Bioluminescence imaging (BLI), which relies on luciferase expression in these cells, has been used for this purpose due to its high sensitivity.New methodIn this study, we employ BLI to track luciferase-expressing human neural progenitor cells (hNPCLuc2) in the rat striatum long-term.ResultsWe show that hNPCLuc2 are detectable in the rat striatum. Furthermore, we demonstrate that using this tracking method, surviving grafts can be detected in vivo for up to 12 weeks, while those that were rejected do not produce bioluminescence signal. We also demonstrate the ability to discern hNPCLuc2 contralateral migration.Comparison with existing methodsSome of the advantages of BLI compared to other imaging methods used to track progenitor/stem cells include its sensitivity and specificity, low background signal and ability to distinguish surviving grafts from rejected ones over the long term while the blood–brain barrier remains intact.ConclusionsThese new findings may be useful in future preclinical applications developing cell-based treatments for neurodegenerative disorders

    Huntington's disease patient-derived astrocytes display electrophysiological impairments and reduced neuronal support

    Get PDF
    In Huntington’s disease (HD), while the ubiquitously expressed mutant Huntingtin (mtHTT) protein primarily compromises striatal and cortical neurons, glia also undergo disease-contributing alterations. Existing HD models using human induced pluripotent stem cells (iPSCs) have not extensively characterized the role of mtHTT in patient-derived astrocytes. Here physiologically mature astrocytes are generated from HD patient iPSCs. These human astrocytes exhibit hallmark HD phenotypes that occur in mouse models, including impaired inward rectifying K+ currents, lengthened spontaneous Ca2+ waves and reduced cell membrane capacitance. HD astrocytes in co-culture provided reduced support for the maturation of iPSC-derived neurons. In addition, neurons exposed to chronic glutamate stimulation are not protected by HD astrocytes. This iPSC-based HD model demonstrates the critical effects of mtHTT on human astrocytes, which not only broadens the understanding of disease susceptibility beyond cortical and striatal neurons but also increases potential drug targets

    Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Get PDF
    Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington's disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.American Heart Association (12PRE10410000)American Heart Association (CIRMTG2-01152)National Institutes of Health (U.S.) (NIHNS089076

    Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain

    Get PDF
    Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity

    Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells

    Get PDF
    In recent years, the assay for transposase-accessible chromatin using sequencing (ATAC-Seq) has become a fundamental tool of epigenomic research. However, it is difficult to perform this technique on frozen samples because freezing cells before extracting nuclei can impair nuclear integrity and alter chromatin structure, especially in fragile cells such as neurons. Our aim was to develop a protocol for freezing neuronal cells that is compatible with ATAC-Seq; we focused on a disease-relevant cell type, namely motor neurons differentiated from induced pluripotent stem cells (iMNs) from a patient affected by spinal muscular atrophy. We found that while flash-frozen iMNs are not suitable for ATAC-Seq, the assay is successful with slow-cooled cryopreserved cells. Using this method, we were able to isolate high quality, intact nuclei, and we verified that epigenetic results from fresh and cryopreserved iMNs quantitatively agree.National Institutes of Health (U.S.) (Grants U54-NS-091046 and U01-CA-184898

    Chromosome 7 and 19 Trisomy in Cultured Human Neural Progenitor Cells

    Get PDF
    BACKGROUND:Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations. METHODS AND FINDINGS:While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC(+7)) and trisomy 19 (hNPC(+19)), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC(+7) and hNPC(+19) cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (beta(III)-tubulin) in hNPC(+7) and hNPC(+19), using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50-60 population doublings and never showed neoplastic changes. Although hNPC(+7) and hNPC(+19) survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line. CONCLUSIONS:We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications
    corecore